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Abstract The aim of this paper is to provide a wavelet analysis of vibration records data from
a naval engine. The paper selects from the mathematical literature on wavelets the necessary
results to develop wavelet-based numerical algorithms. In particular, we provide extensive
details of derivation of Daubechies wavelet coefficients, since these are fundamental to
gaining an insight into the property of wavelets. A natural framework for wavelet theory is
multiresolution analysis (MRA) which is a mathematical construction that characterizes
wavelets in general way. However, conceptually, multiresolution it is intimately related to
subband and wavelet decompositions. The basic idea is successive approximation. Presenting
the results of our research in one-dimensional vibration records data analysis from a naval
engine highlights the benefits of using multiresolution analysis with wavelets.
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1. INTRODUCTION

In his book Chui (1992) presented wavelet analysis, that involves a fundamentally
different approach. Instead of seeking to break down signal into its harmonics, which are
global functions that go on forever, the signal is broken down into a series of local basis
functions called wavelets. Each wavelet is located at a different position on the time axis and
its local in the sense that it decays to zero when’s is sufficiently far from its center. At the
finest scale, wavelets may be very short indeed; at a coarse scale, they may be very long. Any
particular local feature of a signal can be identified from the scale and position of the wavelets
into which it is decomposed. The structure of a non-stationary signal, for example a record of
speech, can be analyzed in this way with local features represented by closely packed
wavelets of short length. Alternatively hidden detail in a record of machinery vibration can be
identified readily from a wavelet map in which the mean-square value of the vibration record
is shown distributed over wavelet scale and position. The changing vibration pattern of an
engine at start-up is another example of the application of wavelet analysis that may be a
significant improvement over the usual waterfall display. In this analysis we are concerned at



orthogonal wavelets. This is because the property of orthogonality allows highly efficient
algorithms to be devised for decomposing a signal into its wavelet components. There is also
no redundancy in the sense that, for any chosen wavelet family, there is only one possible
wavelet decomposition for the signal being analyzed. The discrete wavelet transform (DWT),
which has various different forms, then rivals the fast Fourier transform (FFT) in its speed of
computation and the variety of its applications.

2. MULTIRESOLUTION CONCEPT

A slightly different expansion is obtained with multiresolution pyramids since the
expansion is actually redundant (the number of samples in the expansion is bigger than in the
original signal). However, conceptually, it is intimately related to subband and wavelet
decompositions. The basic idea is successive approximation. A signal is written as a coarse
approximation (typically a lowpass, subsampled version) plus a prediction error, which is the
difference between the original signal, and a prediction based on the coarse version.
Reconstruction is immediate: simply add back the prediction to the prediction error. The
scheme can be iterated on the coarse version. It can be shown that if the lowpass filter meets
certain constraints of orthogonality, then this scheme is identical to an oversampled discrete-
time wavelet series. Otherwise, the successive approximation approach is still at least
conceptually identical to the wavelet decomposition since it performs a multiresolution
analysis of the signal.

The main approach to wavelets is through 2 channel filter banks. Everything develops
from the filter coefficients. By iterating the filter bank we obtain the dilation equation for φ(t)
and the wavelet equation for ψ(t).

The multiresolution analysis (MRA) is a mathematical construction that characterizes
wavelets in a general way. The goal of MRA is to express an arbitrary function f∈  L2(R) at
various levels of detail that implies a decomposition of this function – there is a piece in each
subspace. Those pieces (or projections) give finer and finer details of f(t).

Multiresolution will be described first for subspaces Vj and Wj. The scaling spaces Vj are
increasing. The wavelet space Wj is the difference between Vj and Vj+1. The sum of Vj and Wj

is Vj+1. Then these extra conditions involving dilation to 2t and translation to t-k define the
genuine multiresolution:

If f(t) is in Vj then f(t) and f(2t) and all f(t-k) and f(2t-k) are in Vj+1.
MRA is characterized by the following axioms:
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( ){ } Zkkt ∈−φ  is an orthonormal basis for V0 (1 e)

V0 has a stable basis (Riesz basis) ( ){ } Zkkt ∈−φ (1 f)

This describes a sequence of nested approximation spaces Vj in L2(R) such that the
closure of their union equals L2(R). Projections of a function f∈  L2(R) onto Vj are
approximations to f which converge to f as j → ∞. Furthermore, the space V0 has an



orthonormal basis consisting of integral translations of a certain function φ. Finally, the spaces
are related by the requirement that a function f moves from V0 to Vj+1 when rescaled by 2.

From Eq. (1 e) we have the normalization
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and it also required that φ has unit area, i.e.
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Given the nested subspaces in Eq. (1 b), we define Wj to be the orthogonal complement of
Vj in Vj+1, i.e. Vj ⊥  Wj and
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Consider now two spaces 
0JV  and VJ, where J > J0. Applying Eq. (4) recursively we find
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Thus any function in VJ can be expressed as a linear combination of functions in 
0JV  and

Wj, j =J0, J0+1, …, J-1; hence it can be analyzed separately at different scales. Multiresolution
analysis has received its from this separation scales.

Continuing the decomposition in Eq. (5) for J0 → -∞ and J → ∞ yields in the limits
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It follows that all Wj are mutually orthogonal.
Since the set {φ(t-k)}k∈ Z is an orthonormal basis for V0 by axiom Eq. (1 e) it follows by

repeated application of axiom Eq. (1 f) that
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is an orthonormal basis for Vj. We note that Eq. (7) is the function φ(2jt) translated by k/2j, i.e.
it becomes narrower and translations get smaller as j grows. Since the squared norm of one of
these basis functions is
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it follows that



( ){ } Zk
jj kt ∈−22 2φ  is an orthonormal basis for Vj (9)

Similarly, it is shown by Daubechies (1988) that there exists a function ψ(t) such that
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We call φ the basic scaling function and ψ the basic wavelet. It is convenient to
introduce the notations
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Since ψj,k∈ Wj it follows immediately that  ψj,k is orthogonal to φj,k because φj,k∈ Vj and
Vj⊥ Wj. Also, because all Wj are mutually orthogonal, it follows that the wavelets are
orthogonal across scales. Therefore, we have the orthogonality relations:
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where i, j, k, l∈ Z and δk,l is the Kronecker delta defined as:
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3. FILTER COEFFICIENTS

In this section we will use properties of φ and ψ to derive a number of relations satisfied
by the filter coefficients.

3.1 Orthonormality property

The dilation equation is
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and D is an even positive integer called the wavelet genus and the numbers a0,a1,…,aD-1 are
called filter coefficients. The scaling function is uniquely characterized by these coefficients.

Using the dilation equation Eq. (16) we can transform the orthonormality of the translates
of φ, Eq. (1 c) into a condition on the filter coefficients ak. From Eq. (12) we have the
orthonormality property
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where k1(n) = max ( 0, 2n ) and k2(n) = min ( D-1, D-1+2n ). Although this holds for all n∈ Z,
it will only yield D/2 distinct equations corresponding to n = 0,1,…,D/2–1 because the sum
equals zero trivially for n ≥ D/2 as there is no overlap of the nonzero ak . Hence we have
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Similarly, it follows that
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3.2 Conservation of area

Recall that ( ) 1=∫
∞
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dttφ  and integration of both sides of Eq. (16) then gives
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Newland (1994) suggests the name “conservation of area”.

3.3 Property of vanishing moments

Another important property of the scaling function is its ability to represent polynomials
exactly up to some degree P-1. More precisely, it is required that
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We denote Mk
q the qth moment of  φ(t-k).

Equation (22) can be translated into a condition involving the wavelet by taking the inner
product with ψ(t). This yields,
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since ψ and φ are orthonormal. Hence we have the property of  P  vanishing moments:
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The property of vanishing moments can be expressed in terms of the filter coefficients
after some calculation by this relation
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3.4 Others properties

Others properties of the filter coefficients are
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for integer l=1,2,…, D-1, in order to generate an orthogonal wavelet system, with the
additional condition that
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which arises as a consequence of the scaling function being orthogonal and gives constant
mean square during iteration.



4. THE DAUBECHIES DB6 COEFFICIENT WAVELET SYSTEM

Daubechies sought to find a wavelet family that had compact support and some sort of
smoothness. Starting with certain explicit requirements on the wavelets, she determined the
appropriate refinement coefficients, and then, using the cascade algorithm, developed a plot of
a scaling function. Her discovery that one could actually find a scaling function, given the
conditions she stated, was quite a feat, and was greeted with enthusiasm. Daubechies actually
developed a number of related wavelet families, and we will now consider one of the simplest
examples.

There are three requirements on these simple Daubechies' wavelets. The first condition is
that the scaling function have compact support, in particular, that φ(t) is zero outside of the
interval 0 < t < 3. A consequence of this condition is that all of the refinement coefficients
need to be zero except 43210 ,,,, aaaaa  and 5a . This condition is called the compact support

condition.
The second requirement is the orthogonality condition and the third condition is called

the regularity condition, and it is related to the smoothness of the scaling function, since we
say that the smoother a function is, the more regular it is.

Equations (21), (26), (28) and (29), lead for the Daubechies wavelet order 6, at this
system of equations
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Solving the linear equations, we obtain
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These values define the “db6” Daubechies wavelet.

5. INTEGRAL WAVELET TRANSFORM

Typically, in wavelet analysis we sow that a generating function, the wavelet, is chosen,
and an associated transform gives a time-scale representation. In wavelet representation, the
one, or both, of the time and scale parameters may be discrete or continuous and,
correspondingly, we have the Discrete Wavelet Transform (DWT – both parameters are
discrete) or the Continuous Wavelet Transform (CWT – both parameters are continuous).

The orthonormal wavelet bases constructed by Daubechies (1988), gives rise to a
discrete, time-scale representation of finite energy signals. If the orthonormal wavelet is



compactly supported, then the finite-power signals can also be localized in time and scale,
thus facilitating the study of the time-scale behavior of periodic and non-stationary signals.

The series representation of f in Eq. (18) is called a wavelet series. Analogous to the
notion of Fourier coefficients, the wavelet coefficients dj,l are given by

ljlj fd ,, ,ψ= (32)

That is, if we define an integral transform Wψ on L2(R) by
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then the wavelet coefficients in Eq. (18) and Eq. (32) become
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The linear transformation Wψ is called the “integral wavelet transform” relative to the
“basic wavelet” ψ. Hence, the (j,l)th wavelet coefficient of f is given by the integral wavelet
transformation of f evaluated at the dyadic position jlb 2=  with binary dilation ja 21= ,
where the same orthonormal wavelet ψ is used to generate the wavelet series Eq. (18) and to
define the integral wavelet transform Eq. (33).

If the parameter b and a are discrete, we have in this case the Discrete Wavelet Transform
(DWT) instead of integral wavelet transform. The DWT algorithm was discovered by Mallat
(Chui, 1992, 1994) and is called Mallat’s pyramid algorithm or sometimes Mallat’s tree
algorithm.

6. VIBRATION RECORDS ANALYSIS-USING WAVELETS

One of the most promising applications of wavelets is in the vibration records. By nature
of their construction, a scaling function is a low pass filter and a wavelet is a high pass filter.

The decomposition process can be iterated, with successive approximations being
decomposed in turn, so that one signal is broken down into many lower-resolution
components. This is called the wavelet decomposition tree (see Fig. 1).

Fig. 1 .Wavelet decomposition tree for a signal

It can observe that it is possible to reconstruct our original signal from the coefficients of
the approximations and details. There are several ways to reassemble the original signal, one
way is Signal = cA5 + cD5 + cD4 + cD3 +cD2 +cD1 see Figure 1.

The db6-scaling filter is Finite Impulse Response (FIR) and the coefficients are values are
presented in Table 1. The sum of them is 1 and have the norm 21 .



For analyzing our vibration data we use Fast Wavelet Transform Algorithm discover by
Mallat that produced a fast wavelet decomposition and reconstruction algorithm. The Mallat
algorithm for discrete wavelet transform (DWT) is, in fact, a classical scheme in the signal
processing community, known as a two channel subband coder using conjugate quadrature
filters or quadrature mirror filters (QMF).

Table 1. Coefficients values of db6 scaling filter

1 2 3 4 5 6 7 8 9 10 11 12

0.0789 0.3498 0.5311 0.2229 -0.160 -0.0918 0.0689 0.0195 -0.0223 0.0004 0.0034 -0.0008

The decomposition algorithm start with vibration data s of length 16384=214, then we
applied discrete wavelet transform (DWT). The first step produces, starting from s, two set of
coefficients: approximation coefficients cA1 and detail coefficient cD1. These vectors are
obtained by convolving s, with the low-pass filter for approximation, and with the high –pass
filter for detail, followed by dyadic decimation. The next step splits the approximation
coefficients cA1 in two parts using same scheme, replacing s by cA1 and producing cA2 and
cD2 and so on (see scheme of Fig. 1).
Figure 2 a represent the vibration records data variation non-filtered and in Fig. 2 b filtered
using heuristically method of denoizing with db6 wavelet.

a) b)
Figure 2 Vibration record between 0 – 0.819 seconds

a) non-filtered b) filtered

In the Fig. 3 we represent the decomposition of our non-filtered vibration data from a naval
engine.
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Figure 3 Extract detail coefficient at levels 1 to 5 and approximation coefficient at level 5 of
the vibration records data (length 16384) of naval engine



7. CONCLUSIONS

Applied DWT (see Fig. 4) with a small-scale value permits us to perform a local analysis;
a large-scale value is used for a global analysis. Combining local and global is a useful feature
of the method.

Figure 4 Discrete Wavelet Transform Map

We used wavelet toolbox from MatLab 5.2 software for analyze the vibration record data
and zooming in on detail coefficient of level 1 (cD1) we identified frequencies between 5kHz–
10 kHz, on detail coefficient of level 2 (cD2) we identified frequencies between 3 kHz – 5
kHz, on detail coefficient of level 3 (cD3) we identified frequencies between 2 kHz – 3 kHz,
on detail coefficient of level 4 (cD4) we identified frequencies between 1 kHz – 2 kHz, on
detail coefficient of level 5 (cD5) we identified frequencies between 500 Hz – 1 kHz, on detail
coefficient of level 6 (cD6) we identified frequencies between 250 Hz – 500 Hz.

But, in windows of approximations coefficient (that information’s contained in low
frequency) we remark that after zooming in on approximation coefficient of level 1 (cA1) we
identified frequencies between 2,5 Hz – 3 kHz. Zooming in on approximation coefficient of
level 2 (cA2) we identified frequencies between 2 kHz – 2,5 kHz. Zooming in on
approximation coefficient of level 3 (cA3) we identified frequencies between 1 kHz – 1,5
kHz. Zooming in on approximation coefficient of level 4 (cA4) we identified frequencies
between 500 Hz – 1 kHz. Zooming in on approximation coefficient of level 5 (cA5) we
identified frequencies between 200 kHz – 500 Hz. Zooming in on approximation coefficient
of level 6 (cA6) we identified frequencies between 100 Hz – 200 Hz. Zooming in on
approximation coefficient of level 7 (cA7) we identified frequencies between 5 Hz – 100 Hz.

After these analysis we can precise the fact that this vibration can reconstruct like sum
of sinusoidal functions with next frequencies: 50 Hz, 89 Hz, 125 Hz, 365 Hz, 400 Hz, 455 Hz,
530 Hz, 850 Hz, 1 kHz, 1.25 kHz, 1.75 kHz, 2.25 kHz, 4.2 kHz, 5.2kHz, 6.5 kHz and 8 kHz.

Principals topics used in this paper for analyzing signal vibration are: detecting
breakdown points, processing noise, performing a multi-level decomposition signal vibration,
identifying pure frequencies, removing noise by thresholding using heuristically method.
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